Prototype-enhanced prediction
in graph neural networks for
climate applications

Keshtmand et al. 2025



Overview

e MLJC Website Tour

e FootNet Graph Representations
¢ GaUSS|an Plume InfOI’med CNN d) Encoder » e) Processor

 Graph Neural Network
 Encoder-Process-Decoder

* Prototype informed GNN
* Prototype Selection

GraphCast, Lam et al. 2023
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Last Piece of the Puzzle Goal
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FootNet whatisour objective?

* Predicting the Footprint of Plume from a GHG Source

Hx + b

Y

So, Linear Regression? No, Beeause-thisisa-Mtpaper

Because we are looking for H, not x
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* Input meteorological variables at t and t - 6h
* OQutput H
* Model: -

CNN-

 Validation: Measured Footprint
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* Input meteorological variables at t and t - 6h

° Output H \ Improvement, also include

FooiNet Reversed Gaussian plume
* Model: T
30

* Validation: Measured Footprint s
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+ Meteorological predictors
from t0, t0-6h
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Quick Calculation
under the Gaussian diffusion assumption
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Therefore, we got

Reversed Gaussian plume

FootNet
—/

Concatenation

Ay [ | informed ‘ N N- MaxllL ......... Concatenaton _______, uJ; NEt

sampling
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+ Meteorological predictors (Wait, Berkeley color theme?)
from 10, t0-6h
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Now, GNN Chaos

1. Keisler 2022 GNN Architecture
2. Fillola et al, 2023b Using GNN Predicting Footprint
3. Keshtmand et al. 2025 Adding Prototype Enhancement



What is Graph

 Collection of {(V, E)}

* Vertices (or nodes, or points)
* Edges (or links, or lines)

Edge



What is Graph

 Collection of {(V, E)}

* Vertices (or nodes, or points)
e Edges (or links, or lines)

* The most important thing:



What is Graph

 Collection of {(V, E)}

* Vertices (or nodes, or points)
e Edges (or links, or lines)

* The most important thing:

Graphs can be represented as Matrices



What is Graph

 Collection of {(V, E)}

* Vertices (or nodes, or points)
e Edges (or links, or lines)

* The most important thing:

Graphs can be represented as Matrices

Note: CS people will shove any matrix into neural network



What is Graph

* Behold
* Graph 2> MLP = Graph Neural Network
* Graph 2 CNN = Graph Convolutional Network
* Graph = Transformer = Graph Attention Network
* Graph 2 GRU = Gated Graph Sequence Neural Network

* Now, Graph + anything has a new name: Message Passing Layer



What is Graph

* Behold
* Graph 2> MLP Graph Neural Network
* Graph = CNN Graph Convolutional Network
* Graph = Transformer = Graph Attention Network
* Graph 2 GRU Gated Graph Sequence Neural Network

* Now, Graph + anything has a new name: Message Passing Layer

The Magic of GNN is not GNN itself; it is how to make a graph



Overview: (1) Keisler 2022

Encoder-Process-Decoder

Fillola et al, 2023b
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Overview: (1) Keisler 2022

Encoder-Process-Decoder

Fillola et al, 2023b
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| am disappointed

Be honest, | think the magic of a graph is the edges, not only the vertices
Just check Adaptive Mesh CFD



Overview: (1) Keisler 2022
Encoder-Process-Decoder

* Mesh: h3 from h3geo
* Equal representation of neighbors on Eartt

* Decoupled Grid space and Mesh space
* Mixed resolution

All six neighbors of a hexagon (ring 1)
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Encoder-Process-Decoder

* Mesh: h3 from h3geo

e Equal representation of neighbors on Eartt

* Decoupled Grid space and Mesh space

* Mixed resolution

Also, What if we
use HEALPix mesh
(Edges are fixed anyway)
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All six neighbors of a hexagon (ring 1)

=] I‘:(l\l > physics > arXiv:2311.06253v2

Physics > Atmospheric and Oceanic Physics

[Submitted on 11 Sep 2023 (v1), last revised 18 Jun 2024 (this version, v2)]

Advancing Parsimonious Deep Learning Weather Prediction using the HEALPix Mesh
Matthias Karlbauer, Nathaniel Cresswell-Clay, Dale R. Durran, Raul A. Moreno, Thorsten Kurth, Boris Bonev, Noah Brenowitz, Martin V. Butz

We present a parsimonious deep learning weather prediction model to forecast seven atmospheric variables with 3-h time resolution for up to one-year lead tim:
col

e re es
Pixelization (HEALPix). In comparison to state-of-the-art (SOTA) machine learning (ML) weather forecast models, such as Pangu-Weather and GraphCast, our DLWP-



Overview: (2) Fillola et al, 2023b

GNN % Footprint

e Grid Size: 0.352x0.234 (Much Coarser than FootNet)

* A lot of Meteorological Variables

* Over Brazil

 Measurement: Particle Simulation (NAME) from Met Office
e Result: (What is this?)

Table 1: Performance metrics of footprint emulator with current setup. See A for metric definitions

Pixel-level metrics Footprint-level metrics Concentration-level metrics
MAE Dice similarity Accuracy R2 | NMAE | Mean Bias Error
1.1.10~* 57.2% + 18% | 65.8% 9% | 0.448 | 0.3829 6.43




Overview: (2) Fillola et al, 2023b

GNN —> Footprint

e Result: (oh, this one)

True Footprints
(NAME output)

Emulated
Footprints

Figure 1: Samples of LPDM-generated footprints (top row) and the corresponding emulated footprints
(bottom row), for an area of size =~ 3300x2500 km over Brazil. The date in each column and the red
cross in the centre of each image show when and where the satellite measurement was taken, and the
footprint indicates the area to which that particular measurement is sensitive to. Note the log;( scale.



Overview: (3) Keshtmand et al. 2025

Prototype = GNN = Footprint

e Setup: Same as before, but adding prototype

 How to select prototype?
* Expert-Driven Method

How?

e Random Method

e Data-Driven Method
e K-mean Cluster
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Prototype = GNN - Footprint

e Setup: Same as before, but adding prototype

 How to select prototype?
* Expert-Driven Method

and a data-driven approach. hooses manually n footprints,
aiming to cover a wide range of differen , such as where the upwind areas of the
footprint are one of the four main cardinal directions (Fig. 1a). For comparison, we also train a

e Random Method

e Data-Driven Method
e K-mean Cluster
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Prototype = GNN - Footprint

e Setup: Same as before, but adding prototype

* How to assign a prototype
» Shortest L2 distance of the PCA-64 space

Ly (%) = [|Z]|2 := 1/Z ;]
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Prototype = GNN - Footprint

e Setup: Same as before, but adding prototype

* How to assign a prototype
* Shortest L2 distance of the PCA-64 space

PCA

Match Prototype

Prototype 1
In PCA-64 Space

Prototype 1
In PCA-64 Space

Projection
Oracle Case § OracleCase
In PCA-64 Space

Somehow,
You know the true footprint
In Reality, some other approximation(?)

Shortest Distance

Prototype 1
In PCA-64 Space
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Prototype = GNN - Footprint

Reversed Gaussian plume

FootNet

Measurement footprint

0.2 0.4 (1) 0.8
+ Meteorological predictors
from t0, t0-6h

Concatenation

And other Met-Vars

Up
pooling sampling
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Prototype =2 GN

* Result Discussion:

MSE on test set (native data space)

N = Footprint

(a) Intersection over Union (IoU) score for different prototype sets (Higher is better)

loU scores on the test set during training

loU scores for different sizes of prototype set
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Overview: (3) Keshtmand et al. 2025

Prototype = GNN - Footprint

* Result Discussion: M-
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